Bhattacharyya inequality for quantum state estimation
نویسنده
چکیده
Using higher-order derivative with respect to the parameter, we will give lower bounds for variance of unbiased estimators in quantum estimation problems. This is a quantum version of the Bhattacharyya inequality in the classical statistical estimation. Because of non-commutativity of operator multiplication, we obtain three different types of lower bounds; Type S, Type R and Type L. If the parameter is a real number, the Type S bound is useful. If the parameter is complex, the Type R and L bounds are useful. As an application, we will consider estimation of polynomials of the complex amplitude of the quantum Gaussian state. For the case where the amplitude lies in the real axis, a uniformly optimum estimator for the square of the amplitude will be derived using the Type S bound. It will be shown that there is no unbiased estimator uniformly optimum as a polynomial of annihilation and/or creation operators for the cube of the amplitude. For the case where the amplitude does not necessarily lie in the real axis, uniformly optimum estimators for holomorphic, antiholomorphic and real-valued polynomials of the amplitude will be derived. Those estimators for the holomorphic and real-valued cases attains the Type R bound, and those for the antiholomorphic and real-valued cases attains the Type L bound. This article clarifies what is the best method to measure energy of laser.
منابع مشابه
The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics
In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...
متن کاملFrom Quantum State Targeting to Bell Inequalities
Quantum state targeting is a quantum game which results from combining traditional quantum state estimation with additional classical information. We consider a particular version of the game and show how it can be played with maximally entangled states. The optimal solution of the game is used to derive a Bell inequality for two entangled qutrits. We argue that the nice properties of the inequ...
متن کاملQuantum Estimation by Local Observables
Quantum estimation theory provides optimal observations for various estimation problems for unknown parameters in the state of the system under investigation. However, the theory has been developed under the assumption that every observable is available for experimenters. Here, we generalize the theory to problems in which the experimenter can use only locally accessible observables. For such p...
متن کاملInformation Geometry and Statistical Inference D
Variance and Fisher information are ingredients of the Cram er-Rao inequality. Fisher information is regarded as a Riemannian metric on a quantum statistical manifold and we choose monotonicity under coarse graining as the fundamental property. The quadratic cost functions are in a dual relation with the Fisher information quantities and they reduce to the variance in the commuting case. The sc...
متن کاملRobust self-testing of (almost) all pure two-qubit states
In a nonlocal scenario, physically isolated players each have a device that inputs and outputs classical information. Certain correlations between the joint input and output of the devices almost uniquely identify the quantum state that they share. This phenomenon is known as self-testing and has applications in quantum cryptography with untrusted devices. It was for example shown that for ever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006